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DISCLAIMER 

“ESPGHAN is not responsible for the practices of physicians and provides guidelines and 
position papers as indicators of best practice only. Diagnosis and treatment is at the discretion 
of physicians”. 
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Abstract 

Objectives: The nutritional management of critically ill term neonates and preterm infants 
varies widely, and controversies exist in regard to when to initiate nutrition, mode of feeding, 
energy requirements, and composition of enteral and parenteral feeds. Recommendations for 
nutritional support in critical illness are needed.   

Methods: The ESPGHAN Committee on Nutrition (ESPGHAN-CoN) conducted a 
systematic literature search on nutritional support in critically ill neonates, including studies 
on basic metabolism. The Medline database and the Cochrane Library were used in the 
search for relevant publications. The quality of evidence was reviewed and discussed before 
voting on recommendations, and a consensus of 90% or more was required for the final 
approval. Important research gaps were also identified. 

Results: This position paper provides clinical recommendations on nutritional support during 
different phases of critical illness in preterm and term neonates based on available literature 
and expert opinion. 

Conclusion: Basic research along with adequately powered trials are urgently needed to 
resolve key uncertainties on metabolism and nutrient requirements in this heterogeneous 
patient population.   

 

What is known 

 Cumulative energy- and protein deficits are common in preterm and term infants 

treated for critical illness 

 Critical illness induces an acute stress response that correlates with the duration and 

the severity of the injury insult and alters carbohydrate, protein and fat metabolism  

 Nutritional management in neonatal intensive care units varies widely and there is a 

lack of consensus in regard to optimal timing of initiating and advancement of 

nutritional support 

What is new 

 The European Society for Paediatric Gastroenterology, Hepatology and Nutrition 

Committee on Nutrition provides a comprehensive review of the literature on 

nutritional support in critically ill preterm infants and term neonates 

 Evidence based recommendation for nutritional support during the different phases of 

illness are provided and urgent research gaps are highlighted 
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Introduction 

The nutritional management of critically ill neonates varies widely, and controversies exist in 
regard to when to initiate nutrition, mode of feeding, energy requirements, and composition 
of enteral and parenteral feeds. Recommendations for nutritional support in critical illness are 
needed. 

Critical illness may be defined as any life-threatening condition induced by sepsis, 
major surgery, or other insults associated with tissue injury, such as severe trauma, hypoxia-
ischemia, severe cardio-respiratory compromise, or any other acute illness requiring intensive 
care. Whilst mechanisms of injury vary, there is typically an acute metabolic stress response, 
characterized by the activation of several cytokines (e.g. IL-1, IL-6, IL-8, IL 10, TNF-), 
lipid mediators such as lipoxins, resolvins, protectins, and maresins, and neuro-endocrine 
hormones including catecholamines, glucagon, insulin-like growth factor 1 (IGF1) and 
vasopressin 1,2. The aim of this metabolic response is to repair tissue damage, regain tissue 
homeostasis and resolve inflammation. It involves mechanisms to maintain plasma volume, 
increase cardiac output and mobilize energy reserves 1-3. A persistent or disrupted host 
response may result in exacerbated tissue catabolism (proteolysis and lipolysis), dysregulated 
glucose metabolism, impaired immune function, organ failure and death.  

Multi organ dysfunction and mortality rates are higher in neonates compared to older 
infants, children and adolescents 4 and highlight the need for early identification of critical 
illness to improve outcomes (Table 1) 5. Early diagnosis is challenging especially in preterm 
infants who may already need complex medical support for longer term conditions (for 
example chronic lung disease) without being acutely unwell. Different scoring systems, that 
mostly include a combination of physiologic variables and biomarkers, have been developed 
to help identify infants or neonates with high illness severity and mortality risk, but few of 
these have been tested in prospective trials 6-14.  

The acute metabolic response in critical illness was initially categorized by  
Cuthbertson into the “ebb” and “flow” phases 1,15 to describe the immediate period of 
depressed metabolism and the subsequent more prolonged period of increased metabolic 
activity, characterized by catabolism. The release of cytokines and neuro-endocrine hormones 
during the early phase of critical illness (6-24 h) tends to be proportionate to illness severity 
and duration and counteracts the anabolic effects of insulin and IGF-1 1,16-22. In this phase, 
degradation of stored glycogen is activated to cover energy needs (glycogenolysis) 23. 
Concurrently, protein and fat are mobilized; protein to provide specific amino acid precursors 
for gluconeogenesis and the synthesis of acute phase reactants (such as CRP and fibrinogen) 
in the liver, and fat for the provision of free fatty acids and glycerol. Activated hepatic 
glucose production and reduced uptake of glucose by skeletal muscle increases the risk of 
hyperglycemia 1,2,23. The mobilization of energy through muscle and fat catabolism normally 
persists for several days, resulting in a temporarily cessation of growth 2,15,24,25. Hence, during 
critical illness it is prudent to adapt nutritional care according to the different phases of the 
metabolic stress response and to recognize the hepatic transition to anabolic protein 
metabolism when growth reoccurs. This would help avoid inappropriate nutrition, especially 
overfeeding during the early (catabolic) phase of illness and underfeeding during recovery. 
Consequently, it may help to consider nutritional support in three different phases 25-28; early 
acute phase, late acute phase and recovery phase (Figure 1) 25,29,30. Precisely defining these 
phases in clinical practice may be challenging, but the early acute phase usually ends when 
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clinical symptoms stabilize and acute cardio-respiratory support can be reduced, whereas in 
the recovery phase, intensive cardio-respiratory care is typically no longer required.  

Ideally, the nutritional care of critically ill neonates should be based on true 
measurements of energy expenditure (EE) to avoid the complications associated with under- 
and overfeeding. The gold standard to measure EE in healthy individuals is the stable isotope 
technique with doubly labelled water 31,32. However, when estimating energy requirements in 
clinical practice it is more common to use predictive equations or indirect calorimetry (based 
on mathematical algorithms and measurements of oxygen consumption and carbon dioxide 
production), because they are practical and provide results bedside 33-35. Nevertheless, 
predictive equations are often inaccurate in critical illness, especially in preterm infants, and 
indirect calorimetry is not easily and routinely used in most neonatal intensive care units 
(NICUs) 36-39.  

A large number of observational studies 40-51 and surveys 38,52-56 on nutritional 
practices in preterm and term infants treated for critical illness show that prescribed and 
actual delivered intakes are generally below recommendations, and that cumulative protein- 
and energy deficits may account for as much as 40-45% of the variation in weight for age z-
scores during hospitalization 40,49. Adequate nutrient supply is complicated by carbohydrate 
and lipid intolerance that frequently results in hyperglycemia or lipemia, and this is often 
exacerbated by fluid restriction, concomitant medical infusions, interruption or intolerance to 
enteral feeding or lack of adequate access for enteral and parenteral nutritional support 
50,51,57,58. More proactive nutritional approaches during the first week of life in extreme 
preterm infants and during the acute phase of critical illness overall have been instigated 59-65, 
and some observational studies show positive associations between improved nutrient intakes 
and certain short-term clinical outcomes 46-49,66. However, this may be explained by reversed 
causality and the effect of confounders, and several randomized trials have failed to show 
long term clinical benefits from early, enhanced nutritional support 67,68. On the contrary, 
based on studies in adults, it has been suggested that active nutritional support during the 
acute phase of illness may be harmful and that permissive underfeeding or even starvation 
improves outcomes, possibly by avoiding the induction of “nutri-traumas” such as 
hyperglycemia, suppressed autophagy, mitochondrial dysfunction, and refeeding syndrome 
69,70.  

A large randomized trial, the Early versus Late Parenteral Nutrition in the Pediatric 
Intensive Care Unit (PEPaNIC) trial, showed that withholding parenteral nutrition (PN) 
during the first week of acute illness improved early outcomes as compared to PN initiated 
during the first 24 hours after admission in children 71. Effects were similar in the subgroup 
of 209 term-born neonates recruited to the trial 72. Despite this finding, many clinicians 
appear reluctant to limit early nutritional support due to 1) concerns about possibly harm by 
not providing adequate nutrients during the first week of critical illness, particularly in 
neonates and undernourished children 73, and 2) the belief that exogenous dietary protein 
provision is essential during critical illness 73.  

The results of the PEPaNIC trial require confirmation in other settings, especially by 
conducting studies focusing on nutritional support in critically ill preterm and term neonates, 
before firm recommendations for nutritional practice can be made.   
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Scope of the manuscript and definition of the target patient populations  

The scope of this position paper was to conduct a search of published literature on nutritional 
support during the first week of illness in critically ill neonates to provide practical 
recommendations for nutrient supply. By considering how critical illness affects energy needs 
and the metabolic utilization of carbohydrates, protein and lipids, and by evaluating the 
evidence base for nutritional support in critically ill preterm infants and term neonates, we 
aimed to answer four key questions related to the topic:  

1. How does critical illness affect energy needs and the metabolic utilization of 

carbohydrates, protein and fat? 

2. What is the evidence for mode of feeding (enteral/parenteral)? 

3. What is the evidence for the timing of initiation and the advancement of nutritional 

support? 

4. What recommendations can be made based on the current body of evidence? 

In cases of limited evidence, we considered data from other paediatric or adult trials to see if 
the results could be extrapolated to critically ill neonates. Important research gaps were 
highlighted. 

The target patient population for the nutritional management recommendations for 
this position paper includes 1) preterm infants and term neonates (less than 4 weeks of age) 
requiring major surgical care e.g. congenital heart disorders, gastrointestinal malformations, 
necrotizing enterocolitis (NEC) or spontaneous intestinal perforation (SIP), 2) term neonates 
undergoing therapeutic hypothermia due to hypoxic-ischaemic encephalopathy and 3) 

preterm infants and term neonates with critical medical illnesses (e.g. sepsis and multi organ 
failure). Since neonatal illness severity scores predict time-dependent mortality and short-
term morbidities better than birth weight and gestational age (GA) in very preterm infants 
(birth weight < 1500g or GA < 32 weeks) 7,13,14, we further define preterm infants with high 
illness severity scores as being critically ill, e.g. clinical risk index for babies (CRIB II) > 11 
points or a score for neonatal acute physiology II (SNAP-II) ≥ 30.   

In the context of this paper nutritional support is regarded as the provision of either 
enteral nutrition (EN) through a gastric tube or PN and does not specifically address the 
amount and delivery of intravenous fluids or glucose infusions. This is keeping with the 
recently published guidelines for nutritional support in the pediatric critically ill patient 74. 

Of note, this position paper does not discuss nutritional support in neonates with 
chronic inflammatory diseases or conditions, such as bronchopulmonary dysplasia (BPD) or 
patent ductus arteriosus (PDA).  

Methods  

For this systematic literature review, the Medline database and the Cochrane Library were 
searched for relevant publications in English up to July 2020. Due to the limited number of 
randomized controlled trials, we also included cohort studies, case studies and surveys 
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addressing the topic. Medline search terms included "critical illness" [MeSH Terms], 
“intensive care unit/or intensive care units”, “pediatric/or intensive care units”, neonatal, exp 
critical care, OR "parenteral nutrition, total" [Mesh:noexp],  “parenteral nutrition”, OR 
“enteral nutrition” OR “amino acids/ or fat emulsions, intravenous”. These terms were 
combined with MeSH terms and the key words “therapeutic hypothermia”, “hypoxic 
ischemic encephalopathy”, and “resting energy expenditure”. The searches were restricted to 
the "newborn infant (birth to 1 month)", but included "premature infant" or "premature 
infants" or "very low birth weight" or "very low birth weight infants" or preterm or "preterm 
infants" or "preterm infant".  The primary search retrieved 1113 publications. After screening 
titles and/or abstracts 115 publications were evaluated and additional studies from the 
reference list of relevant publications were selected to complete the search. In total 152 
studies were included in this position paper to help provide evidence based answers about 
nutritional management of the critically ill neonate. Based on available data, 
recommendations were proposed and discussed before anonymous online voting. Any 
recommendation that did not reach a consensus of 90% or more was rephrased until all 
authors agreed for publication.  

Energy needs in healthy and critically ill neonates  

Energy needs in healthy preterm and term neonates 
The main objective for feeding is to enable infants to fulfil their genetic potential for growth 
in order to optimise lifelong health and wellbeing 75,76. Energy requirements should cover I) 
the energy needed to maintain basal metabolic functions (basal metabolic rate; BMR), II) 
energy expended for physical activity, which is usually minimal, III) diet-induced 
thermogenesis, which includes postprandial nutrient metabolism and the energy required for 
synthesis and organization of new tissue, IV) energy stored in new tissue (tissue growth) and 
V) energy lost in stool and urine 27,77. Because measurement of the basal metabolic rate 
requires a 12-18 hour fast, a thermo-neutral environment, and the patient being asleep, basal 
energy requirements are usually estimated by measuring resting energy expenditure (REE), 
i.e. the energy expended by a person at rest, and includes thermoregulation and resting 
muscular activity 78. In neonates, measured REE (or resting metabolic rate; RMR) also 
includes diet-induced thermogenesis as they are never strictly in a fasting state (Figure 2A 
and B).  

Studies of REE during the first few weeks of life in healthy preterm and term infants 
show that REE increases with increasing energy supply during the first weeks of life and that 
REE is directly proportional to growth rate 79,80. Measured values for REE in healthy preterm 
infants are around 35-55 kcal/kg/d during the first 2 weeks of life when nutrient intakes are 
low, and increase to about 70 kcal/kg/d at 1 month of age 80-82.  In healthy term neonates REE 
increases from 45-50 kcal/kg/d to about 60 kcal/kg/d during the same time interval 79,80. Since 
the average energy requirements for growth are 3-5 kcal/g/d 77, depending on the ratio of fat 
and protein deposition, very premature infants require an additional 50-70 kcal/kg/d of 
metabolizable energy to approximate intrauterine growth rates 77,83, whereas the energy 
needed for growth is around 30-40 kcal/kg/d in term neonates. In older children and adults, 
the energy fraction needed for growth in relation to the total energy expenditure is negligible 
19,84. This means that the change in energy needs during critical illness is much larger in 
preterm and term neonates, putting them at extra risk of both over and underfeeding. 



Copyright © ESPGHAN and NASPGHAN. All rights reserved.

Energy needs in critically ill neonates 
Our literature search identified several small studies of EE during critical illness in 

different neonatal settings 85-93, but we did not find any studies of EE in neonates with HIE 
and/or receiving therapeutic hypothermia. Most studies reported REE during the initial acute 
phase 85,86,89-93, but few studies included exclusively preterm infants or neonates < 28 d of 
age. Studies in neonates after uncomplicated surgery show a significant brief increase in REE 
85, followed by REE in the range of the BMR (40-50 kcal/kg/d) for 4-7 days postoperatively 
85,89. Major surgery, surgery associated with other inflammatory insults, and sepsis provoke a 
greater metabolic challenge with a higher average postoperative peak in REE (50-60 
kcal/kg/d) and a slower resolution of the injury response 86,90,91. Data indicate that the 
metabolic stress response after major surgery is shorter in neonates and children than in 
adults 94, and that premature infants (mean GA 29 ± 2.9 weeks, n=18) exhibit an earlier 
anabolic recovery after acute illness compared to infants born nearer to term (GA 38.2 ± 1.8 
weeks, n=55) 95. Figure 2B and 2C illustrate the difference in energy expenditure between 
healthy growing and critically ill neonates. 

The respiratory quotient (RQ) obtained from indirect calorimetry has been proposed 
as a tool to adapt nutritional care during critical illness in neonates and children because the 
ratio of CO2 production to oxygen consumption is dependent on the relative contributions of 
carbohydrate, protein and fat to the EE 19,78,96,97: The RQ for carbohydrate is 1.0, for protein ~ 
0.85, for fat ~ 0.7, and for the conversion of carbohydrate to fat (de novo  lipogenesis) > 1.0. 
In other words, overfeeding or high glucose intakes resulting in high lipogenic activity is 
energy demanding and increases RQ, whereas the use of endogenous fat stores to meet 
energy requirements decreases RQ. An observational study in 98 neonates and children 
showed that despite low sensitivity, RQ values > 0.85 excluded underfeeding and RQ-values 
> 1.0 identified overfeeding or excess carbohydrate intakes 97. Targeting 64-70 kcal/kg/d 
provided as 2.5 g/kg/d of protein, 1-2 g/kg/d of fat and 10 g/kg/d of carbohydrate in the early 
postoperative phase resulted in a RQ > 1, suggestive of some overfeeding in an observational 
study of 10 surgical neonates 19. Along with the resolution of the early acute phase, RQ 
values dropped and caloric support could be increased from the 4th day onwards.  

The finding of a change in energy needs during the first week of critical illness is 
relatively consistent with EE studies in critical ill children, which show that REE values 
gradually increase with increasing length of ICU stay (< 4 days, 4-7 days, > 7 days) 98, but 
also that EE is affected by other factors such as weight, temperature, heart rate, diastolic 
blood pressure, minute ventilation, and drugs 98,99. 

Macronutrient utilization in healthy and critically ill neonates 

Carbohydrate utilization 
Carbohydrate and fat are the main macronutrients for provision of energy 27,75,100. 

Metabolic studies on parenteral macronutrient utilization have shown that glucose is the 
primary determinant for both glucose utilization and the metabolism of fat 101,102. Minimal 
and maximal glucose recommendations are normally based on the endogenous glucose 
production rate (GPR) and the glucose oxidation capacity. The estimated GPRs and glucose 
oxidation rates in preterm infants are ~ 6 mg/kg/min (8.6 g/kg/d) and ~8 mg/kg/min (11.5 
g/kg/d), respectively, compared to 5 mg/kg/min (7.2 g/kg/d) and 12.5 mg/kg/min (18 g/kg/d) 
in term infants 26,101,103.  If glucose supply exceeds the maximum glucose oxidation rate, 
glucose is converted to fat and fat oxidation ceases 101,102,104. However, if the carbohydrate-to-
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fat ratio is reduced, the opposite occurs and fat utilization increases 101,102,104. Nevertheless, 
these rates are only estimates and both higher and lower glucose intakes may sometimes be 
indicated and provided as long as the infants remain euglycemic 101,105,106. 

The utilization of exogenous glucose supply is however influenced by other factors 
including stress induced insulin resistance 2, persistent endogenous gluconeogenesis and 
electrolyte disturbances (e.g. hypophosphatemia) 26,107, all of which often occur during 
critical illness and are commonly encountered in extremely preterm infants 108-112. 
Observational studies show that 50-80% of critically ill children and extremely preterm 
infants experience hyperglycemia (>8.3 mmol/L) 23,113,114. Stress induced insulin resistance 
may develop very rapidly as a response to the increased levels of stress hormones (i.e 
adrenaline, cortisol, glucagon, growth hormone) and inflammatory cytokines (TNF-α, IL-1, 
IL-6 and IL-8 and more), resulting in 1) reduced uptake of glucose by the cells and 2) 
reduced ability to inhibit hepatic gluconeogenesis despite high glucose levels 23.  

Preterm infants are particularly susceptible to hyperglycemia due to immature 
regulatory mechanisms and decreased insulin production by the pancreatic beta-cells 17,115.  
Hyperglycemia is associated with increased mortality and a range of morbidities such as 
multi organ failure, nosocomial infections, intraventricular haemorrhage, NEC, and impaired 
neurodevelopment 113,114, but studies confirming causal relationships are lacking.  

Glycaemic variability, a measure of blood glucose fluctuations over time, has been 
shown to be associated with mortality in critically ill adult patients, independent of mean 
glucose concentrations 116,117. Tian et al studied the effect of high (≥ 70 kcal/kg/d) versus low 
caloric intake (≤ 70 kcal/kg/d) on serum glucose levels and glycaemic variability in 37 
preterm infants less than 30 weeks GA 30. The infants were grouped into high or low 
metabolic stress groups based on peak serum CRP concentration within 72 h of the injury 
insult (postoperative, sepsis, NEC, etc). High metabolic stress was defined as a CRP 
concentration ≥ 50 mg/L. In this study, the high stress group had higher glucose levels and 
increased glycaemic variability compared to the low stress group. A caloric intake ≥ 70 
kcal/kg/d was also found to worsen the injury-related hyperglycemia. Of interest is also the 
interaction between glucose concentrations and lactate levels during critical illness (U-shaped 
curve) 118.  A large retrospective study in critically ill adults showed that high lactate levels 
combined with low glucose concentrations was associated with the highest risk of organ 
dysfunction and hospital mortality 118. In children, lactate resolution has been shown to be 
associated with a decreased risk of persistent organ dysfunction during critical illness and is 
used as a marker to predict outcome 119.  

The prevention and treatment of hyperglycaemia in preterm infants is controversial in 
terms of choosing between reducing carbohydrate supply or starting insulin 120,121. Insulin has 
been shown to reduce mortality and morbidity in critically ill adults 122, but follow-up RCTs 
on the effects of prophylactic insulin infusion with tight glycaemic control in adults, children 
and preterm infants did not show any clear benefit. On the contrary, many demonstrated an 
increased incidence of hypoglycaemia 121,123-127 and even a higher 28-days mortality risk in a 
large RCT of very-low-birth weight infants 127. Interestingly, insulin treatment of established 
hyperglycemia was associated with significant lower 28- and 70-days mortality in the 
population-based EXPRESS (extremely preterm infants in Sweden) cohort study 114. Present 
PN guidelines recommend to start insulin therapy if neonates in the NICU experience 
repeated blood glucose levels >10 mmol/L (180 mg/dL) despite reasonable adaptation of the 
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glucose infusion rate 26. The target glucose level, < 10 mmol/L (180 mg/dL), is the same as 
the target glucose level recommended for critically ill children and adults 26,119,128.  

Protein utilization 
Protein supply should preferably cover protein turnover and tissue growth, because protein 
synthesis is energy demanding and unlike glucose and fatty acids, amino acids cannot be 
stored 27,75,100. Amino acids that are not incorporated into protein are irreversibly oxidized to 
CO2 and ammonia before they are converted to urea in the uric acid cycle and excreted in the 
urine, providing approximately 4 kcal/g 129-131. Excessive amino acid intakes may result in 
toxicity, such as hyperammonemia, metabolic acidosis, seizures or coma 130,132,133. In healthy 
infants, protein needs are based on the sum of amino acids needed to ensure adequate growth 
and the amino acids needed to cover obligatory nitrogen losses 131. Certain non-essential 
amino acids may be synthesized in sufficient quantities from other amino acids and glucose, 
whereas others are essential or conditionally essential and need to be provided through the 
diet 129,131. The rate of protein synthesis is dependent on sufficient availability of one or more 
of the essential or conditionally essential amino acids, whereas an energy supply of 30-40 
kcal per 1 g protein is recommended for optimal protein utilization (> 25 kcal/g amino acids 
when administered parenterally) 129,131.   

During critical illness protein degradation is increased 24. The release of cytokines, 
cortisol, and growth hormone promote proteolysis of skeletal muscle so that specific amino 
acids can be redirected and used as substrates for hepatic gluconeogenesis (particularly 
alanine and glutamine), tissue repair, wound healing and positive acute phase reactants, like 
CRP, haptoglobin, fibrinogen and procalcitonin 19,24,134. At the same time, the synthesis of 
constitutive proteins (albumin and transthyretin), IGF1, retinol-binding protein, and 
transferrin is reduced 134. The endogenous protein breakdown does not seem to be attenuated 
by exogenous protein or carbohydrate supply and may rapid lead to protein-caloric 
malnutrition 1,24,26,135. This may play an important role in growth restricted and premature 
infants with limited protein and energy stores.  

Several studies in preterm infants and sick neonates and children show that a 
minimum intake of 55-58 kcal/kg/d and 1.3-1.5 g protein/kg/d are needed to achieve a 
positive protein balance 57,136-138, albeit higher intakes may be needed in parenterally fed 
patients with severe illness 57. However, since endogenous protein breakdown is relatively 
unaffected by exogenous protein supply, it is not clear whether a positive protein balance is 
possible or even desirable during the early, critical illness phase. In fact, autophagy, the 
recycling of cellular components into amino acids and fatty acids for cellular fuel, is 
enhanced by fasting 69,70. Fasting also promotes the down regulation of mitochondrial activity 
to sustain cell life (theory of adaptive hibernation) 70. Both mechanisms are considered to 
play important roles during the inflammatory response and it is hypothesized that high energy 
and protein intakes may lead to hepatic overload, attenuated autophagy and disrupted 
mitochondrial function 19,70. On the other hand, excessive autophagy and malnutrition may 
worsen mitochondrial dysfunction and trigger cell death 69,139, highlighting the challenge of 
finding the right balance between meeting energy and nutrient needs while avoiding 
overfeeding.  

When the acute stress phase resolves, urinary output commonly increases and 
endothelial membrane integrity improves 1. The accompanying reduction in protein 
catabolism is reflected by decreased urinary nitrogen excretion, decreased CRP and increased 
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albumin and transthyretin levels 1,140. CRP, transferrin and transthyretin concentrations have 
been shown to correlate with the magnitude and duration of the injury response in neonates 
and infants, 96,140,141, and CRP and transthyretin concentrations are predictive for length of 
hospital stay and 30-day mortality 140,142. Thus, it has been suggested that these markers could 
be used to establish the shift from catabolism to anabolism. Other biochemical markers 
commonly used to assess protein tolerance and adapt nutritional care are acid-base status and 
urea levels 143-145. However, an increase in urea levels is an unspecific marker, which more 
often reflects the catabolic state of acute inflammation, intravascular volume depletion, 
inadequate energy supply, suboptimal amino acid composition, or may simply be a sign of 
appropriate amino acid oxidation or higher protein intakes 131.  

Fat utilization 
Lipids provide fatty acids, which are concentrated sources of energy, building blocks of cell 
membranes and precursors of bioactive eicosanoids; important substrates in the regulation of 
inflammation, platelet aggregation and tissue repair 146. During the acute metabolic stress 
response catecholamines (adrenaline, noradrenaline) and growth hormone induce lipolysis 
with mobilization of free fatty acids and glycerol 17,19. Studies in sick preterm neonates and 
older infants have shown that fatty acids are used as a primary fuel source and that lipid 
oxidation is proportional to stress severity 147. 

As mentioned earlier, fat utilization is dependent on the supply of glucose. If glucose 
is provided in amounts higher than the upper threshold for oxidation, excess glucose will be 
redirected to de novo lipogenesis and the oxidation of fatty acids ceases 101,104. The 
conversion of glucose to fat is an energy demanding process characterized by an increase in 
CO2 production relative to oxygen consumption, which may lead to increased respiratory rate 
and ventilator dependency. Reducing the glucose to lipid ratio during parenteral nutritional 
support has been shown to promote fat utilization and reduce lipid peroxidation 101,104. The 
optimal ratio of glucose to lipids is not defined, but some have suggested limiting the amount 
of calories provided as glucose to a maximum of 50% caloric intake in critically ill adults 104. 
Similarly important, if energy supplies are consistently below energy requirements, 
endogenous fat stores are needed for fat oxidation. In a study of 26 children who received 
intravenous carbohydrate exclusively after cardiac surgery, approximately 80% of the 
macronutrient utilization was from oxidation of endogenous fat 148. Such an increased fat 
utilization may be detrimental in preterm and growth restricted infants, who have very limited 
fat stores and are at risk of essential fatty acid deficiencies 149.  

Historical studies suggested that parenteral lipid emulsions may have negative effects 
on pulmonary function, partly by reducing pulmonary diffusion capacity 150, and by 
increasing pulmonary blood pressure and vascular resistance 151. Moreover, high contents of 
soybean oil and phytosterols are thought to induce inflammation and contribute to PN 
induced cholestasis (PNALD) 152,153. Newer composite LE with or without fish oil have been 
developed, providing fatty acids (oleic acid and fish oil) that may be more immunological 
inert or even promote anti-inflammatory mechanisms 149,152,154 but the evidence for beneficial 
effects of these emulsions are low 155-157. Whether newer composite lipid emulsions with or 
without fish oil may be more beneficial in critically ill neonates has not been studied and is 
thus unknown 155. Several components of PN, in addition to lipids, generate oxidants such as 
hydrogen peroxide, lipoperoxides and ascorbylperoxides, so it is recommended to shield PN 
from light to reduce the oxidative load of premature infants and critically ill neonates 149,158. 
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A recent meta-analysis, which included 800 premature infants from 4 trials, showed that 
mortality in the light-protected group was half of that in the light-exposed group, but whether 
this was due to the reduction of peroxides or other factors, such as reduced degradation of 
antioxidant vitamins, remains unclear 158.  

Intravenous lipid emulsions do not seem to affect platelet number or function, but 
there are conflicting data about lipid clearance during sepsis 149. Serum triglyceride levels 
have been shown to correlate with illness severity in critically ill children 96, and more 
frequent monitoring of triglyceride concentrations may thus be helpful when providing 
nutritional care. At present, serum triglyceride concentrations < 3.0 mmol/L (265 mg/dL) are 
generally considered acceptable 149. During suspected/confirmed sepsis, disseminated 
intravascular coagulation, thrombocytopenia, impaired liver function, increased triglyceride 
concentrations or metabolic acidosis, it may be prudent to decrease parenteral lipid supply 
49,52,58. However, both high glucose intake and overfeeding may impair lipid utilization as 
described earlier, and the need for a reduction in glucose load should be considered before 
parenteral lipids are reduced 149.  

Mode of feeding 

The recommended route to administer nutritional support during critical illness is by EN 
where this is possible 159. In contrast to critically ill children and adults, in whom early 
initiation of EN (within 24-48 h) is considered standard of care 28,74,160,161, many critically ill 
preterm infants and neonates receive nutritional support by the parenteral route because the 
gastrointestinal tract is immature or full enteral feeding has not been established. 
Nevertheless, minimal enteral nutrition (MEN), usually defined as the supply of nutritionally 
insignificant milk volumes of 12-24 ml/kg/d 162-164, is advocated whenever possible to 
maintain gut integrity 165 

Studies show that very- and extremely preterm infants may reach full enteral feeds by 
7-14 days 166-168. However, in a large randomized, controlled trial of 2804 preterm infants, a 
faster increment of enteral feeding volumes (target 30 mL/kg/d vs 18 mL/kg/d) did not 
improve survival without moderate or severe neurodevelopmental disability at 24 months, nor 
did it affect the risk of late onset septicemia or NEC 166. Importantly, median (SD) age at 
randomization was 4 (3-6) days and the actual intake volumes were lower than intended, so 
that median days to reach full milk feeding volumes were 7 and 10 days in the faster and 
slower increment groups, respectively.  

We did not identify any randomized controlled trials on the role of feeding mode in 
critically ill term neonates. A secondary analysis of the PEPaNIC trial showed that low mean 
EN intake was associated with new acquired infections, hypoglycaemia, duration of 
mechanical ventilation, length of PICU and hospital stay, but also that all these associations, 
except for hypoglycaemia, disappeared after adjustment for confounders 169. Two small 
retrospective observational studies 170,171 and one survey 172 reported feeding practices in 
infants undergoing therapeutic hypothermia for HIE. Available data suggest that MEN is safe 
and feasible 170,171. Unfortunately, none of these studies reported details on the parenteral 
support given. An ongoing, large retrospective national cohort study aims two give some 
answers to the optimum enteral and PN strategy for term neonates during and after 
therapeutic hypothermia 173, but the results have not yet been published. 
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In sum, there is insufficient data from studies in critically ill preterm infants or term 
neonates to determine whether EN is more beneficial than PN during the acute phase of 
illness, or whether higher EN intake is superior to lower EN intake. The use of EN as 
compared to PN has not been shown to have an effect on overall mortality in critically ill 
adult patients, but to decrease infectious complications and ICU length of stay, most likely 
caused by reduced macronutrient intake with EN 174. Interestingly, data from two large RCTs 
do not support a preference for early enteral compared with early parenteral nutrition when 
nutritional support is targeted at similar calorie and protein intakes (n= 4810 critically ill 
adults) 175,176. On the contrary, these data suggest that early enteral nutrition may be of more 
harm; mainly by increasing the risk of digestive complications 175,176 and, as found in the 
PEPaNIC trial, the risk of hypoglycaemia 176.  

Time of initiation of nutritional support 

Preterm infants 
Historically, it was believed that premature infants tolerated fluid and calorie 

restriction without negative long term effects 177, but in the late 1950s and early 1960s 
experimental studies showed that early malnutrition permanently affected growth of organs, 
including the brain 177,178. Since then, a myriad of studies have investigated safety and 
efficacy of the timing of nutrient supply after birth in very preterm infants 143,144,167,179-196. 
Based on this body of evidence, current European guidelines for PN in children advocate 
early initiation of PN in preterm infants, including 1.5-2.5 g/kg/d of amino acids and 1-2 
g/kg/d of lipids, with a gradual increase to target within a few days 129,149. Since most of the 
studies performed do not include critically ill preterm infants nor discriminate between 
healthier and sicker neonates at inclusion, we do not know whether the results can be 
generalized to the critically ill preterm infant. In a large exploratory, secondary study of a 
randomized trial including 1366 extremely low birth weight infants 48, total daily energy 
intake during the first week of life was found to mediate the effect of critical illness on later 
outcomes 48. However, recent reviews and meta-analyses on the effect of initial higher vs 
lower intakes of parenteral amino acids supply on clinical outcomes in very preterm and low 
birth weight infants, did not find clear evidence for long-term benefits with early higher 
intakes when summarizing data from ~1500 infants 67,68,131.  Apart from modest effects on 
weight gain, protein balance and glucose control, early and higher AA intakes increased the 
risk of raised urea levels and metabolic acidosis.  

Term neonates 
We did not identify any RCT on the clinical effect of the timing of nutritional support in 
critically ill neonates admitted to a NICU 197,198, but two RCTs and one secondary analysis of 
a RCT have studied the effect of early vs delayed nutritional support in neonates and children 
admitted to a pediatric intensive care unit (PICU) 71,199,200.  

The multicenter PEPaNIC trial (n=1440) 71, included 209 neonates (mostly admitted 
due to cardiac and abdominal surgery), and studied the effect of withholding PN for 1 week 
compared to providing full nutrition up to caloric targets by initiating PN within 24 hours 
after admission, if enteral nutrition was insufficient to cover 80% of the caloric target. To 
match fluid intakes between the groups, the late PN group received a mixture of glucose 50 
mg/mL and saline (9 mg/mL). All infants received intravenous trace elements, minerals, and 
vitamins, and glucose concentrations were controlled with insulin according to local target 
ranges 71. Even though the median total macronutrient administration up to day 4 were only 



Copyright © ESPGHAN and NASPGHAN. All rights reserved.

50-70% of target in the early PN group, mean total energy intake exceeded 55 kcal/kg/d on 
day 2, 70 kcal/kg/d on day 3 and 80 kcal/kg/d on day 4 in the infants with a weight < 10 kg  
71,201. In contrast, the mean total energy intake in the late PN group reached 25 kcal/kg/d on 
day 2 and remained between 40 and 45 kcal/kg/d on day 3 and 4, which is more in line with 
both estimated energy requirements and current energy recommendations for the acute phase 
of critical illness (40-50 kcal/kg/) 25,27. The primary study showed that permissive 
underfeeding reduced the incidence of new infections, shortened the duration of intensive 
care dependency, and reduced length of hospital stay 71. The strongest effect was observed in 
neonates and undernourished children 72,202. The PEPaNIC findings are in line with the results 
of the adult EPaNIC study, which showed that early combined parenteral/enteral nutrition 
delayed recovery irrespective of critical illness severity 203.  

Secondary observational analyses of the PEPaNIC trial indicate that early provision of 
parenteral amino acids could explain the worse clinical outcomes in the intervention group 
201. The risk of all studied outcomes gradually increased up to a median daily amino acid dose 
of 1.15 g/kg (IQR 1.10-1.22), representing 40-50% of reference doses for age and weight. 
However, higher doses did not further increase the risk of harm. The authors discuss whether 
this negative effect of parenteral amino acids is caused by the suppression of autophagy, an 
amino acid load above the metabolic capacity of the liver and kidneys or a suboptimal 
composition of the amino acid formulations used 201. Interestingly, higher average doses of 
lipids were associated with a greater likelihood of earlier live discharge and with a greater 
likelihood of earlier live weaning from mechanical ventilation in the neonates. These findings 
support the notion that lipids play an important role during critical illness. Higher plasma 3-
hydroxybutyrate (3HB) and lower blood glucose concentrations were also associated with 
earlier weaning from mechanical ventilator support and live discharge 204. The ketogenic 
fasting response in the late PN group was however not associated with new infections. Other 
adjusted analyses revealed that a higher average blood glucose concentration was an 
independent risk factor for infections, whereas a higher daily glucose dose was protective 201. 
This finding is in line with other studies indicating that factors other than glucose intakes 
have an impact on glucose concentrations 114,188. The low average glucose intake in the late 
PN group (2-3 vs 5-6 mg/kg/min) resulted in a significantly higher risk of hypoglycemia 72. 
Recent data from follow-ups at 2 and 4 years after PICU admission show that delayed PN did 
not negatively affect survival, anthropometrics, health status, or neurocognitive development, 
but reduced emotional and behavioral problems 205,206. Interestingly, critically ill term 
neonates appeared less vulnerable to the developmental harm caused by early-PN compared 
to infants > 29 days, toddlers and children up to 5 years of age 207. 

The second study on the effect of timing of nutritional support, was a small trial on 
the effect of enteral nutrition given within 24 hours compared to after 48 hours in children 
with burns (n=77, age range 3.1-18.4 years) 199. This comprehensive study included blood 
and urine measurements of several endocrine markers of inflammation throughout the study 
period, and biweekly indirect calorimetry. The incidence of reportable adverse events, 
including bowel necrosis, multisystem organ and renal failure, was higher in the early feeding 
group, but this was not significant. Early enteral feeding reduced caloric deficits, stimulated 
early insulin secretion and first week nitrogen balance, but there was no difference between 
the groups in regard to endocrine status, morbidity, mortality, hypermetabolism or length of 
hospital stay.  

The third study investigated the effects of different initiation times of PN (within 48h, 
after 48h to 72h, after 72h to 7 days, and after 7 days) on outcomes in children with severe 
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traumatic brain injury (n=77+13) 200. In this observational part of a RCT (Cool Kids), 
initiating nutritional support before 72 hours was associated with favorable outcomes, 
including improved survival with earlier PN initiation (within 48 hours). Of note, most of the 
children in this trial were between 3 and 15 years. 

It is challenging to make clear recommendation in regard to the best timing of 
nutritional support in critically ill term neonates based on existing evidence. Strengths and 
limitations of the PEPaNIC trial have been extensively debated previously 208-212. Although 
the trial showed no benefit of early PN in any specific age group and a particularly risk of 
harm in children aged between 29 days and 11 months 207, it is important to stress that PN 
was started within 24 h after admission if enteral intakes were not > 80% of target. This is not 
in line with the nutritional guidelines at that time, which only recommended commencing PN 
after a few days if patients were not able to reach 60% of caloric intake with EN 213,214. As 
presented in this literature review, the risk of overfeeding during the acute phase of the 
metabolic stress response is high and current evidence support a cautious supply of nutrients 
at or just below basic energy needs until the resolution of the acute phase. In the early PN 
infants in weight group 0-10 kg of the PEPaNIC trial, energy supplies exceeded 150% of 
theoretical basal energy requirements and protein supplies more than 60-70% of the reference 
dose for age and weight during the early acute phase 201. Since growing infants are at higher 
risk of overfeeding compared to older children and adults 71, this may partly explain the 
larger negative effects found in this group. Moreover, the nutritional interventions tested in 
the PEPaNIC trial represent two extremes of nutrient intakes, and do thus not answer whether 
delaying PN for 7 days improves outcomes as compared to providing PN at or just below 
REE during the early acute phase of critical illness. In addition, the PEPaNIC trial did not 
include preterm infants and since they have very different nutrient requirements, the results 
from term neonates and children cannot be generalized to preterm infants. 

The latest Cochrane review on early versus late PN for critically ill term and late 
preterm infants 198, which only identified data from the PEPaNIC trial 72, concluded that there 
is insufficient evidence from RCTs for recommendations for or against nutritional support 
during the first week of critical illness. Current available guideline recommendations for 
nutritional support in critically ill children 74, including term infants 160, advocate the 
initiation of EN within 24-48 h after admission. A minimal enteral protein intake of 1.5 
g/kg/d may be considered to avoid a negative protein balance, but energy targets should not 
exceed REE during the early acute phase of illness 160. Moreover, recommendations aim to 
achieve at least two thirds of the prescribed energy target by the end of the first week 74. This 
is based on observational cohort studies, which show positive associations between energy 
intakes greater than 67-80% of estimated energy targets and improved outcomes 215,216, and 
that energy intakes above 55 kcal/kg/d are needed to maintain energy equilibrium in young 
children and infants > 1 month of age 57,136. Due to the potential harm of early 
commencement of PN, recommendations regarding initiation of parenteral support differ. 
However, in general, it is recommended that initiation of PN should be considered on an 
individual basis and that PN support can be delayed until day 8 in term infants and children 
with normal nutritional state and low risk of nutritional deterioration 27,74,129. 

Summary 

The ESPGHAN-CoN reviewed relevant studies on nutritional support in critically ill preterm 
and term neonates, including studies on basic metabolism. A body of evidence support that 
measured EE during critical illness is substantially lower than predicted EE of healthy 
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growing neonates; in the range of 40-50 kcal/kg/d with minimal metabolic stress and 50-60 
kcal/kg/d with severe inflammatory stress (sepsis, pre-existing inflammation, etc). 
Nonetheless, there is insufficient data to make firm recommendations on the optimal 
composition and timing of nutritional support.  

In preterm infants, available evidence does not support any significant changes to 
current guidelines, which recommend that critically ill preterm infants should receive 
nutritional support started at (or reduced to) the minimal amount needed to cover basal 
metabolic rate and basic macronutrient needs during the early acute phase 26,27,129,149. For 
many preterm infants this means that they will need PN.  

In critically ill term neonates, initiation of PN within 24 hours is not routinely 
recommended. However, considering the limitations of the PEPaNIC trial and the observed 
low risk of long-term harm from early PN in critically ill neonates, the ESPGHAN-CoN does 
not support a change towards withholding parenteral nutritional support for 7 days as 
standard nutritional care. This position paper suggests considering careful initiation of 
nutritional support, including micronutrients, just below or at predicted REE after 48-72 h. 
Even though recent RCT data in adults implicate that permissive underfeeding with PN is 
safe 175,176, the ESPGHAN-CON only recommends commencing PN to prevent nutritional 
deficiencies when adequate enteral nutrition is not feasible. 

In both critically ill premature infants and term neonates, the phases of clinical illness 
should be assessed daily for adjustments of nutritional care. Although only indicative, 
biomarkers such as CRP, serum-glucose, glycemic variability, lactate, serum triglycerides, , 
transthyretin and urea may be used along with clinical parameters to help recognize the return 
of growth anabolism. We estimate that the early acute phase is likely to last between 2-4 days 
and the late acute phase about 3-6 days. This means that full nutrient intakes (target nutrition) 
may not be appropriate until between 5-10 days after the acute insult, depending on illness 
severity and duration. Of note, premature infants may exhibit an earlier return to anabolism 
after acute illness compared to infants born nearer to term. During the recovery phase, 
nutritional supply in the upper range of recommendations should be considered to help cover 
cumulative deficits and to promote tissue repair, and catch-up growth. 

Conclusion and Recommendations 

This literature review identifies that there are insufficient data to determine the 
optimal composition and timing of nutritional support in preterm infants and term neonates 
who are critically ill. Based on the reviewed literature and a thorough evaluation and 
interpretation of present parenteral and enteral macronutrient guidelines 26,27,76,129,149, the 
ESPGHAN-CoN makes the following cautious recommendations for nutritional management 
during different phases of critical illness:  

 

General recommendations 

 If critical illness is suspected, establish the diagnosis by assessing clinical and biological 

markers (Table 1) 
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 Theoretical energy and macronutrient needs during different phases of critical illness are 

given in table 2 

 Minimal enteral nutrition (MEN) should be initiated within 48 h if feasible 

 Gradually advance nutrient intakes (~1.3 – 1.5 times REE) when the clinical state and the 

inflammatory response are resolving. The transition from the catabolic to the anabolic 

phase seems to start between 3-7 days after the insult, but may occur earlier (24-48 h) in 

preterm infants or neonates with less illness severity or be delayed in neonates with 

severe injury insults 

 During the recovery phase, consider to increase target above estimated needs to cover 

cumulative deficits and promote catch-up growth 

Monitoring 

 Assess the phase of clinical illness every 24 h. Biomarkers such as CRP, glucose, 

glycemic variability, lactate, transthyretin and urea may be used along with clinical 

parameters to recognize the transition from the acute to the stable phase when anabolic 

protein metabolism reoccurs  

 In case of hyperglycemia, start insulin infusion if glucose levels remain > 10 mmol/L 

(180 mg/dL) despite reasonable adaptation of the glucose infusion rate, i.e. ~ 4 

mg/kg/min (6 g/kg/d) in preterm infants and ~ 3 mg/kg/min (4 g/kg/d) in term neonates 

 Extremely preterm infants and small for GA infants are at risk of refeeding syndrome, 

particularly hypophosphatemia. Monitor and replace phosphate and potassium if values 

are low 

The different nutritional objectives between term neonates and preterm infants are 
highlighted in Figure 3. 

Research gaps 

This review calls attention to the fact that basic research and adequately powered trials are 
urgently needed to resolve key uncertainties on metabolism and nutrient requirements in 
critically ill neonates.  
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The ESPGHAN-CoN recommends that future research include 

 RCTs on the timing and amount of PN in critically ill preterm infants and term 

neonates 

 Studies on permissive underfeeding during the early phase of acute illness followed 

by a gradual increase to nutritional target compared to delayed PN in critically ill 

neonates  

 The clinical effects of enteral vs parenteral nutritional support at isocaloric intakes in 

critically ill neonates 

 Role of specific amino acids and fatty acids during critical illness 

 Studies to determine whether nutritional requirements are sex-specific in critically ill 

neonates  

These trials need to consider differing levels of illness severity, include flexible study designs 
to account for heterogeneity in the populations studied, and be large enough to determine 
meaningful differences in functional outcomes, both in the short and long term.  

 

 

 

DISCLAIMER 

“ESPGHAN is not responsible for the practices of physicians and provides guidelines and 
position papers as indicators of best practice only. Diagnosis and treatment is at the discretion 
of physicians”. 
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Table 2.  
Theoretical energy and macronutrient needs during different phases of critical illness in the neonate 

 

 

 

 
Preterm infants  Term neonates < 28 d 

Early acute  Late acute Recovery Early Acute Late acute  Recovery

Energy (kcal/kg/d) 
Enteral  

Parenteral1 

 

40‐55  

40‐55 

 

70‐95 

60‐80 

110‐160 

90‐120 

35‐50 

15‐40 

55‐80 

45‐70 

 

90‐120 

75‐85  

Glucose (g/kg/d)2 

Enteral 

Parenteral
1 

 

5‐8 

5‐8 (10) 

 

7‐11 

7‐10 (12) 

11‐15 (18) 

11‐14 (17) 

4‐6 

4‐7 (10) 

6‐10 

6‐10 

 

9‐15 

8‐14 

Glucose 
(~mg/kg/min) 

Enteral 

Parenteral
1 

 

3.5‐5.5 

3.5‐5.5 (7.0) 

 

5‐7.5 

5‐7 (8.5) 

 

7.5‐10.5 
(12.5) 

7.5‐10 (12) 

 

3‐5 

3‐5 (10) 

 

4‐7 

4‐7 

 

6‐10.5 

5.5‐10 

Protein (g/kg/d) 

Enteral  

Parenteral1  

 

1.0‐2.0 

1.0‐2.0 

 

2.0‐3.0 

2.0‐3.0 

3.5‐4.5 

2.5‐3.5 

< 1.5 

0 (‐1.0) 

1.5‐2.5 

1.5‐2.5 

 

2.0‐3.5 

2.0‐3.0 

Lipids (g/kg/d) 

Enteral  

Parenteral
1,3 

 

2.0‐3.0 

1.0‐2.0 

 

3.0‐6.0 

2.0‐3.0 

5.0‐8.0 

3.0‐4.0  

< 3.0 

0 (‐1.5) 

3.0‐4.5 

1.5‐2.5 

 

4.0‐6.0 

3.0‐4.0  

1 When supplementing parenteral nutrition, enteral intakes need to be considered (subtracted from estimated total needs) 
to optimize nutrient supply and reduce the risk of overfeeding. Note that parenteral energy needs are lower than enteral 
requirements, and that the maximum ranges of protein (amino acids) and lipids are lower than when given enterally. 
2 
The glucose supply should be guided by plasma glucose measurements to avoid hypo‐ and hyperglycemia 

3
 Lipids should be an integral part of PN (30‐50% of non‐protein calories) and the non‐protein energy to protein ratio > 25 
kcal/g protein to facilitate protein utilization.  
 
 

 
 


